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ABSTRACT 

A survey is given of the rationality problem of the center of generic division 

algebras. Connections are given with Brauer groups of fields, geometric 
moduli problems and representation theory. An outline is given of recent 

results. 

1. Rough Guide 

Finding a suitable starting point for a survey is an art in itself, usually heavily 

determined by the place and time of the conference. In this particular case, 

the best start I could come up with was Chicago in 1965. The occasion being 

that S.A. Amitsur gave a series of lectures at the University of Chicago while C. 

Procesi was a student of I.N. Herstein preparing there for his PhD. The collision 

between these two great algebraists resulted in the rings we now know as the ring 

of generic n by n matrices, Rn = k < X, Y >n and the corresponding generic 

division algebra Dn = k( X ,  y )n .  

Ten years before, Amitsur [1] proved that the quotient of the free algebra in 

(say) two variables modulo the T-ideal of all identities satisfied by couples of n × n 

matrices is an Ore domain and hence has a classical division ring of quotients. 

C. Procesi was able to give a more down to earth interpretation of this ring as 

the ring of 2 generic n by n matrices: 
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Consider the commutative polynomial ring P ,  = k[xij,Yij : 1 <_ i , j  < n] and 

define the generic matrices 

X = (~'ij)i,j and  Y = (~lij)i,j E M n ( P n ) .  

Then, Amitsur's ring coincides with the k-subalgebra R ,  of M n ( P , )  generated 

by X and Y and is called the ring of (two) generic n by n matrices. These rings 

as well as their division rings of quotients (the generic division algebras Dn) and 

their centers Cn = Z(Dn)  were studied by Procesi in his Ph.D. (University of 

Chicago, 1966), part of which was published in [22], one of three papers indis- 

pensible to read when one is interested in p.i.-theory. This paper contains the 

first explicit mention of the rationality problem but accompanied with heavy 

scepticism : 

"We have met di~iculties in finding a precise internal description of Cn in 

general, and so, in particular, we leave as open the question of deciding whether 

C ,  is rational or not over k ... the evidence is v e ~  slim, ezcept of course for 

2 × 2 matrices where everything expected can be proved" [22, pp. 240-241]. 

In this note we will describe the little progress made on this problem over the 

last 25 years. Before we give a preview of things to come, let us formalize some 

definitions : 

Definition 1: Let k C L be commutative fields, then L is said to be 

1. r a t i o n a l  iff L ~ k(zl ,  ..., zl) the purely transcendental field in I variables for 

some 1, the isomorphism being one of k-algebras 

2. s t a b l y  r a t i o n a l  iff L(yl ,  ..., yr) for some r becomes rational over k i.e. is 

isomorphic as k-algebras to k(zl ,  ..., xs) for some s 

3. r e t r a c t  r a t i o n a l  iff there is a k-af~ne domain R having L as its functionfield, 

an embedding i : R ~ k[zl, ..., xs]l into a localization of a polynomial ring over 

k and a retract ~r : k[xl, . . . ,zs]l --* R s.t. ~r o i = 1R 

4. u n l r a t i o n a l  iff L is a subfield in a rational field. Note that we can change 

the embedding and the field such that L becomes of finite index. | 

Two k-fields K and L are called s t ab ly  equ iva len t  iff K(z l , . . . ,  z r )~L(v l , . . . ,  y,)  

as k-algebras for some r and s 

Clearly, we have the implications : 

rational =~ stably rational =~. retract rational =~ unirational 
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and although some of the inverse implications were major open problems at a 

time (e.g. Lfiroth's problem asked whether unirationality implies rationality and 

Zariski's problem asked whether stable rationality implies rationality) all inverse 

implications are now known to be false, in general. 

In Table 1, we summarize the present knowledge on the different rationality 

criteria for Cn: 

TABLE 1. Results on Cn up to 1990 

unirational all n Procesi 1967 [22] 

retract rational n squarefree Saltman 1984 [28] 

stably rational n 1420 Katzylo 1989 [15] 

Schofield 1989 [32] 

Bessenrodt, 

Le Bruyn 1989 [6] 

rational n = 2 Sylvester 1883 [34] 

Procesi 1967 [22] 

n = 3 Formanek 1979 [13] 

n = 4 Formanek 1980 [14] 

The motivation for studying rationality of C ,  changed drastically over the years. 

Around 1970 the main motivation was to find a "natural" counterexample to 

the Lfiroth problem, for Procesi [22] did prove that Ca is always unirational 

whereas it was (and still is) not clear at all whether it is rational. However, a few 

years later one found lower dimensional counterexamples by an entirely different 

method, e.g. [5]. 

Around 1980 renewed interest in the rationality problem was fueled by the 

implications ~stable) rationality has on problems concerning the Braner group of 

a field, in particular whether it is generated by cyclic algebras (provided the field 

has enough roots of unity). But again, a few years later Merkurjev and Suslin 

[20] were able to settle this problem affirmatively by an entirely different method. 

Today, the main motivation for studying rationality of C ,  comes from its 

connection with geometrical moduli problems. It did turn out that many wildly 
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open rationality problems can be reduced up to stable equivalence to that  of the 

center of the generic division algebra. 

A more serious obstacle an unprepared reader may run into is that there at 

least three totally different approaches to the study of C,,, pursued by people 

with very different research interests and even aiming at different answers. 

As we go along we will explain in more detail all terminology contained in 

Table 2. 

TABLE 2. Rough map to the literature 

Description Z ( D,, ) F(Mn (9 Mn) PGL" F(U,, (9 a . )  s" 

theme Brauer groups 

answer Negative 

trick Saltman lift 

best result retract rat. 

n squarefree 

Geometry Representation 

theory 

Reductions Positive 

Bogomolov transfer Formanek strategy 

Schofield-Katzylo rational n < 4 

reduction stably rat n = 5, 7 

After this birds eye view on the territory ahead, we will now consider each of 

the three main themes in a more systematic manner : 

2. The  Brauer Group Theme  

The key idea here is easy to grasp: as C,, is the center of the generic division 

algebra Dn, knowledge on Cn and on Dn should imply knowledge on central 

simple algebras of dimension n 2 over their centers L D k and hence on the 

Brauer group Br(L) of any field extension L of k. 

The first result in this direction was obtained in 1972 by S.A. Amitsur [2] 

in giving a counterexample to the famous crossed product problem .If A is a 

division algebra of dimension n 2 over its center K,  then it is well known that 

every maximal commuative subfield of A has dimension n over K.  Moreover, 

one can prove that among all those different fields there always are separable 

extensions of K.  The crossed product problem asks whether there is always also 

a Galois extension among them. In general, the solution was (and is) only known 

to be positive for n 1 12. 
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Amitsur proved that D ,  cannot have a Galois maximal subfield for k = Q 

if p2 I n for p an odd prime or if 8 I n. His proof has two parts : first he 

uses genericity of Dn to show that if Dn contains such a Galois extension with 

group G, then every division algebra of dimension n 2 over any extension field 

of k contains a Galois extension with group G. Next, he constructs explicit 

examples of division algebras over extensions of Q with the property that all 

Galois maximal subfields have a metacyclic group. For p2 I n or 8 I n he is then 

able to construct examples with different groups, concluding the argument. 

After this problem was settled, attention turned to another open problem 

namely whether the Brauer group of K is generated by cyclic algebras? Again, 

the answer was only known under heavy restrictions on K (e.g. if K is a num- 

berfield by the Hasse--Brauer-Noether theorem). In 1974, S. Bloch [7] (the proof 

appeared only in [8]) was able to prove a K-theoretic statement of which a weak 

Brauer group form can be phrased as: if K contains all roots of unity and if 

Br(K) is generated by cyclic algebras then the same is true for the Brauer group 

of K(xl,..., xn) a purely transcendental field extension of K.  

The results of Amitsur and Bloch were then "combined" by S. Rosset in prob- 

ably, one of the more interesting erroneous papers [25]. Nevertheless, Rosset's 

idea has some merrit as R. Snider [33] and C. Procesi [24] showed. Whereas 

Snider considered another class of generic algebras, his "generic crossed prod- 

ucts" (discovered independently around the same time by S. Rosset [26]), C. 

Procesi applied the idea to the generic division algebras : assume that  Cn is sta- 

bly rational over a field k s.t. Br(k) is generated by cyclics (e.g. k algebraically 

closed), then by Blochs result [On] in Br(Cn) is similar to a product of cyclic 

Cn-algebras. But then, using the generic property of Dn one can show that  the 

same holds for any division algebra of dimension n 2 over its center K D k. The 

reader may see [24] for the details. Therefore, if Cn is stably rational for all 

n then the Brauer group of any over-field of k would have to be generated by 

cyclics. As most specialists were rather sceptical about the generated-by-cyclics- 

conjecture, finding a specific field s.t. a division algebra of dimension n 2 was not 

similar to a product of cyclics would prove that Cn could not be (stably) rational. 

It came therefore as a surprise when Merkurjev and Suslin were able to show 

that the conjecture is true whenever the field contains enough roots of unity [20]. 

This result seemed to finish this approach to the rationality problem until D. 

Saltman entered the picture [28]. He showed that rationality (even retract ratio- 
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nality) has much stronger consequences than the Brauer group being generated 

by cyclic algebras. 

His key observation was that retract rationality for certain generic objects 

in fairly general classes of algebras is equivalent to a lifting property for these 

algebras. If we specialize to the situation at hand, i.e. the generic division algebra 

Dn and the class of all central simple algebras of dimension n 2 over their centers, 

then his result can be phrased as follows : 

Cn is retract rational if and only if for every local domain A with maximal 

ideal m and any c.s.a. A of dimension n 2 over the residue field A/m there exists 

an Azumaya algebra A with center A s.t. A ~ A ®A (A/m). 

Hence,the Saltman-lift idea to disprove rationality (or even retract rationality) 

of C,, is to construct manageable local domains failing to possess this lifting 

property. 

On the positive side, assume that for a certain number n one can prove the 

lifting property, then one has proved retract rationality of Cn as Saltman was 

able to do for n squarefree (see [28] for the prime number case). 

3.  T h e  G e o m e t r i c a l  T h e m e  

Here, the key idea is to view C,, as the functionfield of a quotient variety under 

a reductive group action and to hope that the powerful machinery of geometric 

invariant theory will allow us to reduce the problem to more manageable ones. 

The starting point this time is a paper by M. Artin [4], the second of three 

papers indispensible to read if you are (still) interested in p.i.-theory. Artin not 

only characterizes Azumaya algebras by their identities in this paper, but he also 

proves the following description of C,: 

Consider pairs of n × n matrices over an algebraically closed field k of charac- 

teristic zero 

M.(k) • M.(k) = V.. 

The general linear group GLn(k) acts on this vectorspace by simultaneous conju- 

gation, thereby making it really an action of the projective linear group PGL.(k) 

= GL.(k)/k*. Hence, PGL.(k) acts on the coordinate ring of V. which is the 

polynomial ring P .  introduced before and one can consider the invariant algebra 

under this action: 

pPGL.  = {f 6 P . :  7" f = f ,  V7 6 (P)GL.}. 
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By general theory, this algebra is an affine k-algebra and it is the coordinate 

ring of the quotient variety Vn/PGLn parametrizing the closed orbits of the 

action (which in this case are precisely the isoclasses of n-dimensional semi-simple 

representations of the free algebra k < X, Y > [4]). 

Although Artin was not able to prove that R PGL" is generated by traces 

Tr(Xi~ yj~ .... Xi~ yjh ) for all k, it and jt (a fact which was later proved by Procesi 

[23]) he did prove that the field of fractions of R PGLn (and hence the funetionfield 

of Vn/PGL,) is equal to Cn. 

This paper initiated the extensive study of finite dimensional representations 

of affine p.i.-rings but had no immediate bearing on the rationality problem 

itself until quite recently M. Van den Bergh [35] and myself [18] used Artin's 

description of Cn to link it to geometrical questions. Van den Bergh proved 

that Cn is the functionfield of the generic Jacobian variety of plane curves of 

degree n (and using this interpretation he gave a nice geometrical proof of the 

rationality of Ca). Later (although the paper appeared first) I proved that Cn is 

the functionfield of the moduli space M(n; 0, n) of stable rank n vector bundles 

on the projective plane with Chern numbers cl = 0, c2 = n. This last fact 

was recently extended by P.I. Katzylo [16] to that of stable rank r bundles on 

P2 with Chern numbers cl = 0, c2 = s.He proved that the functionfield of the 

corresponding moduli space is stably equivalent to Cn where n = gcd(r, s). 

Having reduced our problem to an entirely geometrical one (rationality prob- 

lems for moduli spaces have been studied thoroughly), one could try to skim 

the geometry literature for clues. And in fact, Maruyama [19] claimed to have 

proved stable rationality of M(n; 0, n) by showing that it is stably rational over 

k(Mn(k)) PGL" = k(Tr(X), Tr(X2), ..., Tr(X")). However, if geometers would 

have taken the trouble to read the related ring theory literature they would have 

known by 1980 that such a result could not be true for n = 4 as an argument due 

to R. Snider mentioned in [14] and [24] shows. The gap in the Maruyama proof 

was communicated by K. Hulek, J. Le Potier and independently by D. Saltman, 

see e.g. [18]. 

The next step forward was a general transfer result due to Bogomolov, see 

e.g. [12]. Let G be any reductive group and V and W two finite dimensional G- 

representations which are almost free, meaning that the stabilizer of a sufficiently 

general point is trivial. Then, if k is algebraically closed of characteristic zero, 

Bogomolov shows that the respective invariant fields k(V) a and k(W) a are stably 
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equivalent. 

This Bogomolov transfer result shows us two things : (a) stable rationality of 

invariant fields of almost free representations is a property of the group rather 

than the particular representation and (b) as long as we are interested in stable 

rationality we have some freedom in chosing another (almost free) representation. 

Using this result and the theory of reflexion functors in the representation 

theory of quivers, due to Berstein, Gelfand and Ponomarov, A. Schofield and 

myself [17] were able to reduce the stable rationality problem for many moduli 

problems which can be expressed in linear data to that of Cn. Rather than 

stating the result in its precise form (which involves some quiver-lingo) let me 

give a characteristic example, the r-subspace problem: 

This problem asks for the determination of all possible positions of r subspaces 

of given dimensions say n l , . . . , n r  in a big vectorspace of dimension N up to 

basechange in this large space. The corresponding geometrical problem is that 

of classifying GLg-orbits in a product of Grassmann varieties 

Grass(n1, N) x - . -  x Grass(n~, N) 

and it was one of the test-examples for Mumford's geometric invariant theory 

[21]. He proved that a point (UI,..., Ur) in this product is a stable point w.r.t. 

the GLN-action iff one cannot find a proper subspace V of dimension v of k N s.t. 

v -1 (~-'~ dimk(V N Ui) > N -1 dimk(Ui) = N -1 y]~ ni. 
i=1 i=1 i = l  

Now, assume that one does have a stable point, then our result implies that 

the functionfield of the corresponding quotient variety is stably equivalent to C,~ 

where n = gcd(N, nl, ..., n~). 

Another, more recent, application of Bogomolov transfer is the Schofield- 

Katzylo reduction result [32], [15]. They prove that if n = a.b with (a, b) = 1 

then Cn is stably equivalent to Ca ® Cb reducing the (stable) rationality problem 

of Cn to that of prime power values of n. 

Schofield's proof contains two parts: first it is well known that principal PGLn- 

bundles (in the &ale topology) correspond to Azumaya algebras of rank n ~ and 

hence give rise to central simple algebras of dimension n 2 over their centers. 

If n = a.b with (a, b) = 1 such a central simple algebra can be written in a 

controllable way as a tensor product of central simple algebras of dimension a 2 
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and b 2. Therefore, one expects a reduction of group argument from P G L .  to 

PGL~ × PGLb and Schofield shows that the generic fibre of the natural  map of 

homogenous spaces 

GL.2/PGL, ,  x PGLI, ~ G L . 2 / P G L .  

is indeed stably rational. The next step is then to use Bogomolov transfer to show 

that GL.2 /PGL~ × PGLb is stably equivalent to Va/PGL~ × ~ / P G L b  finishing 

the proof. 

4. The Representation Theoretical Theme 

This time we view C .  as a field of tori-invariants under a finite group and use the 

extensive theory of tori-invariants developed in the early seventies to reduce the 

problem to one of lower transcendence degree and in some cases to prove (stable) 

rationality. 

Once again, the starting point is Procesi's paper [22] in which he proved uni- 

rationality of C .  by showing that the field obtained by adjoining to C .  the 

characteristic roots of the first generic matrix X is rational over k and has a 

natural action of the symmetric group S .  such that Cn is its field of invariants. 

Later, Formanek [13] gave an interpretation of this fact in terms of tori- 

invariants. Recall that for a finite group G a G-lattice is a free Abelian group of 

finite rank with a G-action and if it has a Z-basis which is permuted by this action, 

it is called a permutation G-lattice. Let U.  = Zul ~ . . .  (9 Z u .  be the standard 

permutation S.-lat t ice Z S . / S . - 1 .  Further, let H .  = Zbll (~ Zbl2 (D ' "  (~ Zbnn be 

the permutation S.-lat t ice Z S . , / S . - 2  @ U.  via the action ~.bij = ba.i,~.j. Then, 

there is a morphism of S.-lattices ¢ : H .  ~ U. determined by ¢(bii) = ui - u 1 

giving rise to an exact sequence 

O -~ G. -~ H. -~ U. -~ Z -~ O 

where G .  = Ker(¢) and the rightmost map 7r : U.  --* Z is the augmentation map 

sending each ui to 1 (note that the kernel of 7r is the root lattice An- l ) .  

If G is a finite group and if L is a field with a faithful G-action by k-automor- 

phisms and if A is a G-lattice, then there is a composite G-action on the group 

algebra L[A] of the Abelian group A over L and hence also on its field of fractions 

L(A) .  The field of invariants L(A)  G is then called the field of tori-invariants of 

L and A under G. 
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In our ease, there is a faithful Sn-action on k(Un) and we can form the field of 

tori-invariants k(Un )( Gn ) s* = k(Un (9 Gn ) s~. The Procesi-Formanek result now 

states that  this field coincides with Cn. 

The usefulness of this description is clear from the following result: define two 

S .  lattices M and N to lie in the same bag  if[ there is a third Sn-lattice E and 

exact sequences of S,~-lattices 

O-* M--* E--* P, ~ O 

O ~  N--* E ~ P2 ~ O  

with the P/permutat ion S.-lattices. Now, for any faithful Sn-lattice F we have 

that k(F (9 M) s" is stably equivalent to k(F (9 N) s" (over k(F) sn) if and only 

if M and N belong to the same bag. 

This leads us directly to Formanek's strategy to prove stable rationality of C .  

implicit in [14]: find a faithful S.-lattice B .  of low rank lying in the same bag as 

G .  (which itself has rank n 2 - n q- 1) and prove that k(B.)  s" is (stably) rational 

over k. 

Indeed, the result mentioned before states that C. = k(U. (9 Gn) $~ is stably 

equivalent to k(U. (9 B. )  s" . As U. is a permutation lattice it follows from an old 

result of Masuda that k(U. (gB.) s" is rational over k(B.)  s" which by assumption 

is (stably) rational over k, hence so will be C..  

This reduces our problem partly to integral representation theory of the sym- 

metric groups. Whereas QS.-modules are completely determined by their char- 

acters, ZS.-lattices in general do not decompose uniquely into indecomposables 

and there are in general many nonisomorphic S.-lattices lying in the same ra- 

tional representation. These two facts make integral representations of S .  a lot 

harder to study than the usual representations. 

Still, by the Jordan-Zassenhaus result there are only a finite number of iso- 

classes of S.-lattices for any given rank and so one could in principle hope to 

give a full bag-picture of the S.-lattices up to a certain rank. In practice how- 

ever, things turn out to be quite hopeless for ranks greater than n. If the rank 

is smaller than n - 1, then the rational representation is made up of copies of 

the trivial representation corresponding to the Young tableau (1, ..., 1) and of 

the sign representation corresponding to the tableau (n) so these lattices can be 

described as extensions with building blocks Z and sgn(Z) and they all lie in the 

bag containing all permutation S.-lattices. 
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If the rank equals n - 1, then two new simple rational representations occur, 

namely (2,1,1,  ..., 1) and (n - 1, 1), and one has a complete classification of all 

Sn-lattices contained in them, see [11]: 

In (2,1, ..., 1): An-,  C An-,  It] C A*~_,, 

In (n - 1 ,1 ) :  SA,-1 C SAn-, [r] C SA*_,, 

with one isoclass for each divisor r of n. Here ( - )*  denotes the dual lattice, 

SAn-1 is the signed root lattice, i.e. the kernel of (signed) augmentation map 

on the signed permutation lattice SUn which has a basis u / o n  which Sn acts via 

a.Ui = sgn(o')ua(i)- 

The easiest case would be that Gn was lying in the bag containing all permu- 

tation lattices for then we could take B .  = U. and clearly k(U,,) s~ is rational 

on the elementary symmetric functions. 

Now, for n < 3 one can show that there is just one bag entailing stable ratio- 

nality for C~ and C3 and being a bit more prudent one can even show rationality. 

For example C2 = k(Tr(X), Tr(Y), D(X), D(Y), Tr(XY)) .  For an explicit tran- 

scendence basis of C3 see [13]. 

However, if n > 4 there are always infinitely many bags in the picture so we 

cannot use this easy way out. Note that from the above discussion it follows 

that a necessary and sufficient condition for Gn to lie in the permutation bag is 

that Cn is stably rational over k(Mn(k)) PGL" = k(Un) S~. At first sight this is 

probable as one would expect to be able to take Tr(X),  . . . ,Tr (X")  as part  of a 

transcendence basis for Cn. 
Surprisingly enough, R. Snider showed around 1980 that G4 could not lie in 

the permutation bag. This fact was mentioned without a hint of the proof in 

[13] and [24] and this caused some confusion as it conflicted Maruyama's result 

mentioned before. The first published proof of Sniders remark is due to Colliot- 

Th~l~ne and Sansuc [9] and at about the same time Saltman (in an unpublished 

letter [31]) extended Sniders remark to all non-squarefree values of n. 

Nevertheless, Formanek [14] was able to show that G4 lies in the same bag 

as the rank three S4-1attice SA~ by explicitly writing down some sequences of 

S4-1attices. Moreover, he did show that k(SA~) s~ is a rational field. In this proof 

he made heavy use of the fact that the general quartic equation is solvable and 

it started rumours (e.g. [3] and [27]) that  there were reasons to believe that  Cs 

could not be (stably) rational. 
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So, G,, cannot lie in the permutation bag if n is not squarefree. What  about 

the other extreme, i.e. what if n is a prime number? After all, Saltman proved 

that  C" is retract rational in these cases. 

A representation theoretic proof of this result was given by Colliot-Th$lSne and 

Sansuc [9]. They proved that for n prime, Gn lies in the same bag as an invertible 

lattice (i.e. a direct summand of a permutation lattice), which immediatly implies 

(via Masudas result mentioned above) that C" is retract rational. This result 

was improved by Ch. Bessenrodt and myself [6] by showing that  G" itself is 

invertible if n is prime. 

Of course, these results make one wonder whether G" could lie in the permu- 

tation bag for prime values of n. Unfortunately, this is never the case if n is 

larger than 3 (see [6]) giving a prime analogue to the Snider-Saltman result. I 

conjecture that Gn never lies in the permutation bag if n > 4 with the possible 

exception of n = 6. 

Still, invertibility of G" was the first step in proving stable rationality for n = 5 

and n = 7 [6]. The proof consists of two steps. First we prove that G" lies in the 

same bag as the dual of the root lattice A* ,,-1 for n = 5 and n = 7. Dualizing 

the defining sequence of G" we have 

0 --4 A ' _  1 --* B"  ~ G" ~ 0. 

Now, assume that  Gn ~ G* is a stable permutation lattice, i.e. that  there exist 

permutat ion Sn-lattices Pi s.t. 

G" ~ G:, e PI ~- P2, 

then one would obtain the sequence 

O --* A ' _  1 --* G" ~ B"  ~ PI ~ P2 - * 0  

entailing that  A*_ 1 and G" lie in the same bag. 

For this reason, the bulk of the paper [6] consists in finding a method to 

determine when an invertible lattice is stable permutation, and this method was 

then applied to prove the above claim for n = 5 and n = 7. 

The next step is a lot easier, namely showing that k(A*_ 1)s" is rational. For, 

we have the sequence 
$ 

O --* Z--* U, --* A , _ I  --* O 
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where the leftmost map sends 1 to ~ ui. On the groupalgebra level this amounts 

to k[A,S"_a] = k[u l , u ?  1, 1 - '  • .., un, u,, ] / (u lu2 . . .un  - 1). As everything is Sn-equivar- 

iant we have that  

k t A .  ~s. k(al ,  . . . , a n - l )  \ n - - l ]  

rational on the first n - 1 elementary symmetric functions. This finishes an 

outline of the proof of stable rationality of C5 and C~. 

However, for n a prime number larger than 7 one can show that Gn ~ G* is 

no longer stable permutation. Hence, for such n there is no lattice of rank n - 1 

lying in the same bag as Gn and we have to gain more insight into the wild part 

of the Sn-lattices. 

5. W h a t ' s  N e x t ?  

Of course one would like to extend upon the results obtained so far. However, 

a complete answer to the question for which n the center of the generic division 

algebra C ,  is (stably) rational seems to be at present out of reach. Meanwhile, 

there are some less ambitious questions which would increase our knowledge 

considerably. Let me finish this note by asking three specific questions, one for 

each theme: 

BRAUER GROUP QUESTION. The precise connection between (stable) rational- 

ity of Cn and the crossed product property of Dn should be understood. For a 

long time the number of n's s.t. Dn was known to be a crossed product outnum- 

bered those for which Cn was known to be stably rational. This is now reversed, 

so in particular one could ask whether stable rationality of C5 and C7 has any 

bearing on the problem whether division algebras of degree 5 or 7 are cyclic. 

GEOMETRICAL QUESTION. Calculate new birational invariants for Vn/PGL, .  

For some time [30] (or a few years later [9] in characteristic zero) it is known that 

the Brauer group of a smooth proper model of Cn is trivial. Recently, Colliot- 

Th61~ne and Ojanguren [10] introduced new birational invariants, which ought 

to be computed for Cn. 

REPRESENTATION QUESTION. What is the minimal rank of a (faithful) lattice 

lying in the same bag as G , ?  In particular, can one improve upon the best 

general upper bound found by Formanek [14] (i.e. < n 2 - 3n + 1) to get it linear? 

Recall that for n -- 4, 5 or 7 it is known to be n - 1 but for larger primes the rank 



110 L. LE BRUYN Isr. J. Math. 

should be  greater. Of  course, a more ambitious project is to find an expllcit low 

rank lattice lying in the same bag or at least having the same local invariants as 

in [6]. 
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